Configuring Hybrid Device Join On Active Directory with SSO

Posted on 7 CommentsPosted in Azure Active Directory, Azure AD, AzureAD, device, device registration, hybrid

The instructions from Microsoft at https://docs.microsoft.com/en-us/azure/active-directory/device-management-hybrid-azuread-joined-devices-setup are missing some of the steps on setting up hybrid device join to Azure AD. This is a complete list of steps when Pass-Thru auth with SSO is enabled on the domain.

  1. Enable SSO – this is covered elsewhere. You can also do hybrid device join on a federated domain, though this is not covered here.
  2. On your AADConnect server ensure that the MSOnline PowerShell add in is installed – this is the AdministrationConfig-3.msi executable that is needed to run cmdlets like Get-MSOLUser. Is only supported by the MSOnline PowerShell module version 1.1.166.0. To download this module, use this link
  3. Open an administrative PowerShell
  4. cd 'C:\Program Files\Microsoft Azure Active Directory Connect\AdPrep'
  5. Import-Module .\AdSyncPrep.psm1
  6. This will enable the AD module and import some scripts for device writeback and device registration. We are looking at device registration here
  7. $aadAdminCred = Get-Credential

    #Enter a global admin credential

  8. Initialize-ADSyncDomainJoinedComputerSync –AdConnectorAccount [connector account name] -AzureADCredentials $aadAdminCred

    #[connector account name] is the name of your domain (domain.local for example) as shown in the AADConnect Synchronization Service Manager –

  9. You should see the message “Initializing your Active Directory forest to sync Windows 10 domain joined computers to Azure AD.” followed by “Configuration Complete”. Errors about Azure Registration mean you are running the wrong version of the Azure AD PowerShell cmdlets
  10. The required settings in AD (for one forest) are now done. If you have multiple forests, return to the above referenced document and run the script to register the Devices Registration Configuration node to AD
  11. If you have conditional access available (have at least one Azure AD Premium licence assigned to your admin account) then you can add Trusted Sites to Azure AD to control where MFA prompts for device join will happen outside of. Add each office public NATed IP address with /32 (or whatever is needed at the end) into Azure Active Directory (under portal.azure.com) > Conditional Access > Named Locations > New Location
    image
  12. Add the same IPs to the “Configure MFA trusted IPs” link on the same page that you see the IP’s listed above
  13. Your list of devices under Azure Active Directory should now increase as users reboot Windows 10 1703 machines and later. See the above document about the GPO setting needed to role this out to older versions of Windows (Workplace Join settings)

Administrators, AADConnect and AdminSDHolder Issues (or why are some accounts having permission-issue)

Posted on 2 CommentsPosted in AADConnect, AADSync, active directory, AdminSDHolder, dirsync, exchange, exchange online, hybrid, Office 365

[Scripts updated 5th October 2017 to support updates for Exchange Hybrid Writeback. If you ran earlier versions of these scripts you will need to run them again]

AdminSDHolder is something I come across a lot, but find a lot of admins are unaware of it. In brief it is any user that is a member of a protected group (i.e. Domain Admins) will find that their AD permission inheritance and access control lists on their AD object will be reset every hour. Michael B. Smith did a nice write-up on this subject here.

AdminSDHolder is an AD object that determines what the permissions for all protected group members need to be. Why this matters with AADConnect and your sync to Azure Active Directory (i.e. the directory used by Office 365) is that any object that the AADConnect service cannot read cannot be synced, and any object that the AADConnect service cannot write to can be targeted by writeback permissions. This blog post was last updated 18th June 2017 in advance of the release of AADConnect version 1.1.553.0.

For the read permissions this is less of an issue, as the default read permissions by every object is part of a standard Active Directory deployment and so you will find that AdminSDHolder contains this permission and therefore protected objects can be read by AADConnect. This happens in reality becase Authenticated Users have read permissions to lots of attributes on the AdminSDHolder object under the hidden System containing in the domain. Unless your AD permissions are very locked down or AdminSDHolder permissions have been changed to remove Authenticated Users you should have no issue in syncing admin accounts, who of course might have dependencies on mailboxes and SharePoint sites etc. and so need to be synced to the cloud.

Writeback though is a different ball game. Unless you have done AADConnect with Express settings you will find that protected accounts fail during the last stage of AADConnect sync process. You often see errors in the Export profile for your Active Directory that list your admin accounts. Ofter the easiest way to fix this is to enable the Inheritance permission check box on the user account and sync again. The changes are now successfully written but within the hour this inheritance checkbox will be removed and the default permissions as set on AdminSDHolder reapplied to these user accounts. Later changes that need written back from the cloud will result in a failure to writeback again, and again permission issues will be to blame.

To fix this we just need to ensure that the AdminSDHolder object has the correct permissions needed. This is nothing more than doing what the AADConnect Express wizard will do for you anyway, but if you don’t do the Express wizard I don’t think I have seen what you should do documented anywhere – so this is the first (maybe).

Often if you don’t run Express settings you are interested in the principal of least privilege and so the rest of this blog post will outline what you will see in your Active Directory and what to do to ensure protected accounts will always sync and writeback in the Azure Active Directory sync engine. I covered the permissions to enable various types of writeback permissions in a different blog post, but the scripts in this post never added the correct write permissions to AdminSDHolder, so this post will cover what to do for your protected accounts.

First, take a look at any protected account (i.e. one that is a member of Domain Admins):
image

You will see in the Advanced permissions dialog that their is an “Enable Inheritance” button (or a check box is unchecked in older versions of Active Directory. You will also notice that all the permissions under the “Inherited From” column read “None” – that is there are no permissions inherited. You will also see, as shown in the above dialog, that if Express settings have been run for your AADConnect sync service that a access control entry for the AADConnect service account will be listed – here this is MSOL_924f68d9ff1f (yours will be different if it exists) and has read/write for everything. This is not least privilege! If you have run the sync engine previously on different servers and later removed them (as the sync engine can only run on one server to one AAD tenant, excluding staging servers) then you might see more than one MSOL account. The description field of the account will show what server it was created on for your information.

If you compare your above admin account to a non-protected account you will see inheritance can be disabled and that the Inherited From column lists the source of the permission inheritance.

Compare the access control entries (ACE) to the list of ACE’s on the AdminSDHolder object. AdminSDHolder can be found at CN=AdminSDHolder,CN=System,DC=domain,DC=local. You should find that the protected accounts match those of the AdminSDHolder, or at least will within the hour as someone could have just changed something.

Add a permission ACE to AdminSDHolder and it will appear on each protected account within an hour, remove an ACE and it will go within the hour as well. So you could for example remove the MSOL_ account(s) from older ADSync deployments and tidy up your permissions as well.

This is what my Advanced permissions for AdminSDHolder looks like on my domain

image

If I add the relevant ACE’s here for the writeback permissions then within the hour, and then for syncs that happen after that time, the errors for writeback in the sync management console will go away. Note though that AdminSDHolder is per domain, so if you are syncing more than one domain you need to set these permissions on each domain.

To script these permissions, run the following in PowerShell to update AD permissions regarding to the different hybrid writebacks scenarios that you are interested in implementing.

Finding All Your AdminSDHolder Affected Users

The following PowerShell will let you know all the users in your domain who have an AdminCount set to 1 (>0 in reality), which means they are impacted by AdminSDHolder restrictions. The changes below directly on the AdminSDHolder will impact these users as their permissions will get updated to allow writeback from Azure AD.

get-aduser -Filter {admincount -gt 0} -Properties adminCount -ResultSetSize $null | FT DistinguishedName,Enabled,SamAccountName

SourceAnchor Writeback

This setting is needed for all installations since version 1.1.553.0.

$accountName = "domain\aad_account" #[this is the account that will be used by Azure AD Connect Sync to manage objects in the directory, this is an account usually in the form of AAD_number or MSOL_number].
$AdminSDHolder = "CN=AdminSDHolder,CN=System,DC=contoso,DC=com"

$cmd = "dsacls.exe '$AdminSDHolder' /G '`"$accountName`":WP;ms-ds-consistencyGuid'"
Invoke-Expression $cmd | Out-Null

Password Writeback

The following PowerShell will modify the permissions on the AdminSDHolder object so that protected accounts can have Self Service Password Reset (SSPR) function against the accounts. Note you need to change the DC values in the script for it to function against your domain(s).

Note that if you implement this, I recommend that you use version 1.1.553 or later, as that version restricts rogue Azure AD admins from resetting other Active Directory admins passwords and then taking ownership of the Active Directory account. Often Azure AD admins have admin rights in AD, and so this was always possible independent of AADConnect, but versions of AADConnect prior to 1.1.553 would allow an Azure AD admin to reset a restricted AD account that they did not own.

To determine the account name that permissions must be granted to, open the Synchronization Service Manager on the sync server, click Connectors and double click the connector to the domain you are updating. Under the Connect to Active Directory Forest item you will see the Forest Name and User Name. The User Name is the name of the account you need in the script. An example is shown below:

image

$accountName = "domain\aad_account" #[this is the account that will be used by Azure AD Connect Sync to manage objects in the directory, this is an account usually in the form of AAD_number or MSOL_number].
$AdminSDHolder = "CN=AdminSDHolder,CN=System,DC=contoso,DC=com"

$cmd = "dsacls.exe '$AdminSDHolder' /G '`"$accountName`":CA;`"Reset Password`"'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls.exe '$AdminSDHolder' /G '`"$accountName`":CA;`"Change Password`"'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls.exe '$AdminSDHolder' /G '`"$accountName`":WP;lockoutTime'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls.exe '$AdminSDHolder' /G '`"$accountName`":WP;pwdLastSet'"
Invoke-Expression $cmd | Out-Null

Exchange Hybrid Mode Writeback

The below script will set the permissions required for the service account that AADSync uses. Note that if Express mode has been used, then an account called MSOL_AD_Sync_RichCoexistence will exist that has these permissions rather than being assigned directly to the sync account. Therefore you could change the below permissions to utilise MSOL_AD_Sync_RichCoexistence rather than AAD_ or MSOL_ and achieve the same results, but knowing that future changes to the MSOL_ or AAD_ account will be saved as it was done via a group.

The final permission in the set is for msDS-ExternalDirectoryObjectID and this is part of the Exchange Server 2016 (and maybe Exchange Server 2013 later CU’s) schema updates. Newer documentation on AAD Connect synchronized attributes already has this attribute listed, for example in Azure AD Connect sync: Attributes synchronized to Azure Active Directory

$accountName = "domain\aad_account"
$AdminSDHolder = "CN=AdminSDHolder,CN=System,DC=contoso,DC=com"

$cmd = "dsacls '$AdminSDHolder' /G '`"$accountName`":WP;proxyAddresses'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$AdminSDHolder' /G '`"$accountName`":WP;msExchUCVoiceMailSettings'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$AdminSDHolder' /G '`"$accountName`":WP;msExchUserHoldPolicies'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$AdminSDHolder' /G '`"$accountName`":WP;msExchArchiveStatus'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$AdminSDHolder' /G '`"$accountName`":WP;msExchSafeSendersHash'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$AdminSDHolder' /G '`"$accountName`":WP;msExchBlockedSendersHash'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$AdminSDHolder' /G '`"$accountName`":WP;msExchSafeRecipientsHash'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$AdminSDHolder' /G '`"$accountName`":WP;msDS-ExternalDirectoryObjectID'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$AdminSDHolder' /G '`"$accountName`":WP;publicDelegates'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$AdminSDHolder' /G '`"$accountName`":WP;msExchDelegateLinkList'"
Invoke-Expression $cmd | Out-Null

Once these two scripts are run against AdminSDHolder object and you wait an hour, the permissions will be applied to your protected accounts, then within 30 minutes (based on the default sync time) any admin account that is failing to get cloud settings written back to Active Directory due to permission-issue errors will automatically get resolved.

Unable To Remove Office 365 Domain Error

Posted on Leave a commentPosted in dirsync, exchange online, hybrid, IAmMEC, MSOL, Office 365, powershell

If you need to remove a domain from Office 365 it needs to not be in use. This includes the services that use that domain, for example an Accepted Domain in Exchange Online. If though you have an expired, maybe test, Office 365 tenant and you want to remove a domain from it you may find unhelpful error messages. For example I have seen in the domain removal process in the portal a message saying “Please don’t close this page while we remove your domain” etc. It tries for several minutes as it predicts, but did not complete:

image

Upon failing to complete you get a further warning before it finally gives up and tells you that it cannot complete:

image

So the obvious next step (or obvious to me anyway) is to try the removal in remote PowerShell to Office 365. The cmdlet is Remove-MsolDomain -DomainName domain.com but this comes back with with messages that might be helpful, but after repeated running of the cmdlet and fixing the error still suggests the same fix.

image

The error reads: Remove-MsolDomain : Unable to remove this domain. Use Get-MsolUser -DomainName <domain name>  to retrieve a list  of objects that are blocking removal. The problem with this error is the list of objects here are only user accounts and not any of the other objects that could block a domain removal.

So sure, remove your unneeded users or change their UPN/email address to not include this domain that you want to remove, but also run Get-MsolContact and Get-MsolGroup and then remove or edit the contacts and the groups that use this domain.

So though the error says to fix the user objects that are blocking domain removal, you also need to fix or remove the groups and contacts as well.

Configuring Writeback Permissions in Active Directory for Azure Active Directory Sync

Posted on 45 CommentsPosted in 2008, 2008 R2, 2012, 2012 R2, active directory, ADFS 3.0, Azure, Azure Active Directory, cloud, exchange, exchange online, groups, hybrid, IAmMEC, Office 365, WAP, Web Application Proxy, windows

[This blog post was last updated 5th October 2017 – added support to Exchange Hybrid for msExchDelegateLinkList attribute which was announced at Microsoft Ignite 2017 for the support of keeping auto-mapping working cross on-premises and the cloud]

[Updated 18th June 2017 in advance of the release of AADConnect version 1.1.553.0. This post contains updates to the below scripts to include the latest attributes synced back to on-premises including publicDelegates, which is used for supporting bi-directional sync for “Send on Behalf” of permissions in Exchange Online/Exchange Server hybrid writeback scenarios]

[Update March 2017 – added another blog post on using the below to fix permission-issue errors on admin and other protected accounts at http://c7solutions.com/2017/03/administrators-aadconnect-and-adminsdholder-issues]

Azure Active Directory has been long the read-only cousin of Active Directory for those Office 365 and Azure users who sync their directory from Active Directory to Azure Active Directory apart from eight attributes for Exchange Server hybrid mode. Not any more. Azure Active Directory writeback is now available and in preview for some of the writeback types at the time of writing. This enabled objects to be mastered or changed in Azure Active Directory and written back to on-premises Active Directory.

This writeback includes:

  • Devices that can be enrolled with Office 365 MDM or Intune, which will allow login to AD FS controlled resources based on user and the device they are on
  • “Modern Groups” in Office 365 can be written back to on-premises Exchange Server 2013 CU8 or later hybrid mode and appear as mail enabled distribution lists on premises. Does not require AAD Premium licences
  • Users can change their passwords via the login page or user settings in Office 365 and have that password written back online.
  • Exchange Server hybrid writeback is the classic writeback from Azure AD and is the apart from Group Writeback is the only one of these writebacks that does not require Azure AD Premium licences.
  • User writeback from Azure AD (i.e. users made in Office 365 in the cloud for example) to on-premises Active Directory
  • Windows 10 devices for “Azure AD Domain Join” functionality

All of these features (apart from Exchange Hybrid writeback) require AADConnect and not and of the earlier verions (which will be actively blocked by the end of 2017 anyway). Install and run the AADConnect program to migrate from DirSync to AADSync and then in the Synchronization Options on rerunning the AADConnect wizard you can add all these writeback functions.

In all the below sections you need to grant permission to the connector account. You can find the connector account for your Active Directory forest from the Synchronization Service program > Connectors > double-click your domain > select Connect to Active Directory Forest. The account listed here is the connector account you need to grant permissions to.

SourceAnchor Writeback

For users with (typically) multi-forest deployments or plans or a forest migration, the objectGuid value in Active Directory, which is used as the source for the attribute that keys your on-premises object to your synced cloud object – in AAD sync parlance, this is known as the SourceAnchor. If you set up AADConnect version 1.1.553.0 or later you can opt to change from objectGuid to a new source anchor attribute known as ms-ds-consistencyGuid. To be able to use this new feature you need the ability for AADConnect connector account to be able to read ObjectGUID and then write it back to ms-ds-consistencyGuid. The read permissions are typically available to the connector account without doing anything special, and if AADConnect is installed in Express Mode it will get the write permissions it needs, but as with the rest of this blog, if you are not using Express Mode you need to grant the permissions manually and so write permissions are needed to the ms-ds-consistencyGuid attribute. This can be done with this script.


$accountName = "domain\aad_account" #[this is the account that will be used by Azure AD Connect Sync to manage objects in the directory, this is often an account in the form of MSOL_number or AAD_number].
$ForestDN = "DC=contoso,DC=com"

$cmd = "dsacls '$ForestDN' /I:S /G '`"$accountName`":WP;ms-ds-consistencyGuid;user'"
Invoke-Expression $cmd | Out-Null

Note that if you use ms-ds-consistencyGuid then there are changes required on your ADFS deployment as well. The Issuance Transform Rules for the Office 365 Relying Party Trust contains a rule that specifies the ImmutableID (aka AADConnect SourceAnchor) that the user will be identified as for login. By default this is set to ObjectGUID, and if you use AADConnect to set up ADFS for you then the application will update the rule. But if you set up ADFS yourself then you need to update the rule.

Issuance Transform Rules

When Office 365 is configured to federate a domain (use ADFS for authentication of that domain and not Azure AD) then the following are the claims rules that exist out of the box need to be adjusted. This is to support the use of ms-ds-consistencyguid as the immutable ID.

ADFS Management UI > Trust Relationships > Relying Party Trusts

Select Microsoft Office 365 Identity Platform > click Edit Claim Rules

You get two or three rules listed here. You get three rules if you use -SupportMultipleDomain switch in Convert-MSOLDomainToFederated.
Rule 1:
Change objectGUID to ms-DS-ConsistencyGUID
Rule Was:
c:[Type == “http://schemas.microsoft.com/ws/2008/06/identity/claims/windowsaccountname”]
=> issue(store = “Active Directory”, types = (“http://schemas.xmlsoap.org/claims/UPN”, “http://schemas.microsoft.com/LiveID/Federation/2008/05/ImmutableID”), query = “samAccountName={0};userPrincipalName,objectGUID;{1}”, param = regexreplace(c.Value, “(?<domain>[^\\]+)\\(?<user>.+)”, “${user}”), param = c.Value);
New Value:
c:[Type == “http://schemas.microsoft.com/ws/2008/06/identity/claims/windowsaccountname”]
=> issue(store = “Active Directory”, types = (“http://schemas.xmlsoap.org/claims/UPN”, “http://schemas.microsoft.com/LiveID/Federation/2008/05/ImmutableID”), query = “samAccountName={0};userPrincipalName,ms-DS-ConsistencyGUID;{1}”, param = regexreplace(c.Value, “(?<domain>[^\\]+)\\(?<user>.+)”, “${user}”), param = c.Value);

Preparing for Device Writeback

If you do not have a 2012 R2 or later domain controller then you need to update the schema of your forest. Do this by getting a Windows Server 2012 R2 ISO image and mounting it as a drive. Copy the support/adprep folder from this image or DVD to a 64 bit domain member in the same site as the Schema Master. Then run adprep /forestprep from an admin cmd prompt when logged in as a Schema Admin. The domain member needs to be a 64 bit domain joined machine for adprep.exe to run.

Wait for the schema changes to replicate around the network.

Import the cmdlets needed to configure your Active Directory for writeback by running Import-Module ‘C:\Program Files\Microsoft Azure Active Directory Connect\AdPrep\AdSyncPrep.psm1’ from an administrative PowerShell session. You need Azure AD Global Admin and Enterprise Admin permissions for Azure and local AD forest respectively. The cmdlets for this are obtained by running the Azure AD Connect tool.


$accountName = "domain\aad_account" #[this is the account that will be used by Azure AD Connect Sync to manage objects in the directory, this is often an account in the form of MSOL_number or AAD_number].
Initialize-ADSyncDeviceWriteBack -AdConnectorAccount $accountName -DomainName contoso.com #[domain where devices will be created].

This will create the “Device Registration Services” node in the Configuration partition of your forest as shown:

image

To see this, open Active Directory Sites and Services and from the View menu select Show Services Node. Also in the domain partition you should now see an OU called RegisteredDevices. The AADSync account now has permissions to write objects to this container as well.

In Azure AD Connect, if you get the error “This feature is disabled because there is no eligible forest with appropriate permissions for device writeback” then you need to complete the steps in this section and click Previous in the AADConnect wizard to go back to the “Connect your directories” page and then you can click Next to return to the “Optional features” page. This time the Device Writeback option will not be greyed out.

Device Writeback needs a 2012 R2 or later AD FS server and WAP to make use of the device info in the Active Directory (for example, conditional access to resources based on the user and the device they are using). Once Device Writeback is prepared for with these cmdlets and the AADConnect Synchronization Options page is enabled for Device Writeback then the following will appear in Active Directory:

image

Not shown in the above, but adding the Display Name column in Active Directory Users and Computers tells you the device name. The registered owner and registered users of the device are available to view, but as they are SID values, they are not really readable.

If you have multiple forests, then you need add the SCP record for the tenant name in each separate forest. The above will do it for the forest AADConnect is installed in and the below script can be used to add the SCP to other forests:

$verifiedDomain = "contoso.com"  # Replace this with any of your verified domain names in Azure AD
$tenantID = "27f998bf-86f2-41bf-91ab-2d7ab011df35"  # Replace this with you tenant ID
$configNC = "CN=Configuration,DC=corp,DC=contoso,DC=com"  # Replace this with your AD configuration naming context
$de = New-Object System.DirectoryServices.DirectoryEntry
$de.Path = "LDAP://CN=Services," + $configNC
$deDRC = $de.Children.Add("CN=Device Registration Configuration", "container")
$deDRC.CommitChanges()
$deSCP = $deDRC.Children.Add("CN=62a0ff2e-97b9-4513-943f-0d221bd30080", "serviceConnectionPoint")
$deSCP.Properties["keywords"].Add("azureADName:" + $verifiedDomain)
$deSCP.Properties["keywords"].Add("azureADId:" + $tenantID)
$deSCP.CommitChanges()

Preparing for Group Writeback

Writing Office 365 “Modern Groups” back to Active Directory on-premises requires Exchange Server 2013 CU8 or later schema updates and servers installed. To create the OU and permissions required for Group Writeback you need to do the following.

Import the cmdlets needed to configure your Active Directory for writeback by running Import-Module ‘C:\Program Files\Microsoft Azure Active Directory Connect\AdPrep\AdSyncPrep.psm1’ from an administrative PowerShell session. You need Domain Admin permissions for the domain in the local AD forest that you will write back groups to. The cmdlets for this are obtained by running the Azure AD Connect tool.

$accountName = "domain\aad_account" #[this is the account that will be used by Azure AD Connect Sync to manage objects in the directory, this is often an account in the form of MSOL_number or AAD_number].
$cloudGroupOU = "OU=CloudGroups,DC=contoso,DC=com"
Initialize-ADSyncGroupWriteBack -AdConnectorAccount $accountName -GroupWriteBackContainerDN $cloudGroupOU

Once these cmdlets are run the AADSync account will have permissions to write objects to this OU. You can view the permissions in Active Directory Users and Computers for this OU if you enable Advanced mode in that program. There should be a permission entry for this account that is not inherited from the parent OU’s.

At the time of writing, the distribution list that is created on writeback from Azure AD will not appear in the Global Address List in Outlook etc. or allow on-premises mailboxes to send to these internal only cloud based groups. To add it to the address book you need to create a new subdomain, update public DNS and add send connectors to hybrid Exchange Server. This is all outlined in https://technet.microsoft.com/en-us/library/mt668829(v=exchg.150).aspx. This ensure’s that on-premises mailboxes can deliver to groups as internal senders and not require external senders enabled on the group. To add the group to the Global Address List you need to run Update-AddressList in Exchange Server. Once group writeback is prepared for using these cmdlets here and AADConnect has had it enabled during the Synchronization Options page, you should see the groups appearing in the selected OU as shown:

image

And you should find that on-premises users can send email to these groups as well.

Preparing for Password Writeback

The option for users to change their passwords in the cloud and have then written back to on-premises (with multifactor authentication and proof of right to change the password) is also available in Office 365 / Azure AD with the Premium Azure Active Directory or Enterprise Mobility Pack licence.

To enable password writeback for AADConnect you need to enable the Password Writeback option in AADConnect synchronization settings and then run the following three PowerShell cmdlets on the AADSync server:


Get-ADSyncConnector | fl name,AADPasswordResetConfiguration
Get-ADSyncAADPasswordResetConfiguration -Connector "contoso.onmicrosoft.com - AAD"
Set-ADSyncAADPasswordResetConfiguration -Connector "contoso.onmicrosoft.com - AAD" -Enable $true

The first of these cmdlets lists the ADSync connectors and the name and password reset state of the connector. You need the name of the AAD connector. The middle cmdlet tells you the state of password writeback on that connector and the last cmdlet enables it if needed. The name of the connector is required in these last two cmdlets.

To set the permissions on-premises for the passwords to be written back the following script is needed:

$passwordOU = "DC=contoso,DC=com" #[you can scope this down to a specific OU]
$accountName = "domain\aad_account" #[this is the account that will be used by Azure AD Connect Sync to manage objects in the directory, this is often an account in the form of MSOL_number or AAD_number].

$cmd = "dsacls.exe '$passwordOU' /I:S /G '`"$accountName`":CA;`"Reset Password`";user'"
Invoke-Expression $cmd | Out-Null

$cmd = "dsacls.exe '$passwordOU' /I:S /G '`"$accountName`":CA;`"Change Password`";user'"
Invoke-Expression $cmd | Out-Null

$cmd = "dsacls.exe '$passwordOU' /I:S /G '`"$accountName`":WP;lockoutTime;user'"
Invoke-Expression $cmd | Out-Null

$cmd = "dsacls.exe '$passwordOU' /I:S /G '`"$accountName`":WP;pwdLastSet;user'"
Invoke-Expression $cmd | Out-Null

Finally you need to run the above once per domain.

Preparing for Exchange Server Hybrid Writeback

Hybrid mode in Exchange Server requires the writing back on eight attributes from Azure AD to Active Directory. The list of attributes written back is found here. The following script will set these permissions for you in the OU you select (or as shown at the root of the domain). The DirSync tool used to do all this permissioning for you, but the AADSync tool does not. Therefore scripts such as this are required. This script sets lots of permissions on these eight attributes, but for clarify on running the script the output of the script is sent to Null. Remove the “| Out-Null” from the script to see the changes as they occur (the script also takes a lot longer to run).

$accountName = "domain\aad_account" #[this is the account that will be used by Azure AD Connect Sync to manage objects in the directory, this is often an account in the form of MSOL_number or AAD_number].
$HybridOU = "DC=contoso,DC=com"

#Object type: user
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;proxyAddresses;user'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchUCVoiceMailSettings;user'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchUserHoldPolicies;user'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchArchiveStatus;user'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchSafeSendersHash;user'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchBlockedSendersHash;user'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchSafeRecipientsHash;user'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msDS-ExternalDirectoryObjectID;user'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;publicDelegates;user'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchDelegateLinkList;user'"
Invoke-Expression $cmd | Out-Null

#Object type: iNetOrgPerson
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;proxyAddresses;iNetOrgPerson'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchUCVoiceMailSettings;iNetOrgPerson'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchUserHoldPolicies;iNetOrgPerson'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchArchiveStatus;iNetOrgPerson'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchSafeSendersHash;iNetOrgPerson'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchBlockedSendersHash;iNetOrgPerson'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchSafeRecipientsHash;iNetOrgPerson'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msDS-ExternalDirectoryObjectID;iNetOrgPerson'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;publicDelegates;iNetOrgPerson'"
Invoke-Expression $cmd | Out-Null
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;msExchDelegateLinkList;iNetOrgPerson'"
Invoke-Expression $cmd | Out-Null

#Object type: group
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;proxyAddresses;group'"
Invoke-Expression $cmd | Out-Null

#Object type: contact
$cmd = "dsacls '$HybridOU' /I:S /G '`"$accountName`":WP;proxyAddresses;contact'"
Invoke-Expression $cmd | Out-Null

Finally you need to run the above once per domain.

Preparing for User Writeback

[This functionality is not in the current builds of AADConnect]

Currently in preview at the time of writing, you are able to make users in Azure Active Directory (cloud users as Office 365 would call them) and write them back to on-premises Active Directory. The users password is not written back and so needs changing before the user can login on-premises.

To prepare the on-premises Active Directory to writeback user objects you need to run this script. This is contained in AdSyncPrep.psm1 and that is installed as part of Azure AD Connect. Azure AD Connect will install Azure AD Sync, which is needed to do the writeback. To load the AdSyncPrep.psm1 module into PowerShell run Import-Module ‘C:\Program Files\Microsoft Azure Active Directory Connect\AdPrep\AdSyncPrep.psm1’ from an administrative PowerShell session.

$accountName = "domain\aad_account" #[this is the account that will be used by Azure AD Connect Sync to manage objects in the directory, this is an account usually in the form of AAD_number].
$cloudUserOU = "OU=CloudUsers,DC=contoso,DC=com"
Initialize-ADSyncUserWriteBack -AdConnectorAccount $accountName -UserWriteBackContainerDN $cloudUserOU

Once the next AADSync occurs you should see users in the OU used above that match the cloud users in Office 365 as shown:

image

Prepare for Windows 10 Registered Device Writeback Sync

Windows 10 devices that are joined to your domain can be written to Azure Active Directory as a registered device, and so conditional access rules on device ownership can be enforced. To do this you need to import the AdSyncPrep.psm1 module. This module supports the following two additional cmdlets to prepare your Active Directory for Windows 10 device sync:

CD "C:\Program Files\Microsoft Azure Active Directory Connect\AdPrep"
Import-Module .\AdSyncPrep.psm1
Initialize-ADSyncDomainJoinedComputerSync
Initialize-ADSyncNGCKeysWriteBack

These cmdlets are run as follows:

$accountName = "domain\aad_account" #[this is the account that will be used by Azure AD Connect Sync to manage objects in the directory, this is often an account in the form of MSOL_number or AAD_number].
$azureAdCreds = Get-Credential #[Azure Active Directory administrator account]

CD "C:\Program Files\Microsoft Azure Active Directory Connect\AdPrep"
Import-Module .\AdSyncPrep.psm1
Initialize-ADSyncDomainJoinedComputerSync -AdConnectorAccount $accountName -AzureADCredentials $azureAdCreds 
Initialize-ADSyncNGCKeysWriteBack -AdConnectorAccount $accountName 

Once complete, open Active Directory Sites and Services and from the View menu Show Services Node. Then you should see the GUID of your domain under the Device Registration Configuration container.

image

Speaking at TechEd Europe 2014

Posted on 4 CommentsPosted in certificates, cloud, EOP, exchange, exchange online, Exchange Online Protection, GeoDNS, hybrid, IAmMEC, journaling, mcm, mcsm, MVP, Office 365, smarthost, smtp, starttls, TechEd, TLS, transport

I’m please to announce that Microsoft have asked me to speak on “Everything You Need To Know About SMTP Transport for Office 365” at TechEd Europe 2014 in Barcelona. Its going to be a busy few weeks as I go from there to the MVP Summit in Redmond, WA straight from that event.

image

My session is going to see how you can ensure your migration to Office 365 will be successful with regards to keeping mail flow working and not seeing any non-deliverable messages. We will cover real world scenarios for hybrid and staged migrations so that we can consider the impact of mail flow at all stages of the project. We will look at testing mail flow, SMTP to multiple endpoints, solving firewalling issues, and how email addressing and distribution group delivery is done in Office 365 so that we always know where a user is and what is going to happen when they are migrated.

Compliance and hygiene issues will be covered with regards to potentially journaling from multiple places and the impact of having anti-spam filtering in Office 365 that might not be your mail flow entry point.

We will consider the best practices for changing SMTP endpoints and when is a good time to change over from on-premise first to cloud first delivery, and if you need to maintain on-premises delivery how should you go about that process.

And finally we will cover troubleshooting the process should it go wrong or how to see what is actually happening during your test phase when you are trying out different options to see which works for your company and your requirements.

Full details of the session, once it goes live, are at http://teeu2014.eventpoint.com/topic/details/OFC-B350 (Microsoft ID login needed to see this). Room and time to be announced.

Exchange Web Services (EWS) and 501 Error

Posted on 12 CommentsPosted in 2010, 2013, EWS, exchange, exchange online, hybrid, IAmMEC, iis, Kemp, Load Master, Office 365, tmg

As is common with a lot that I write in this blog, it is based on noting down the answers to stuff I could not find online. For this issue, I did find something online by Michael Van “Hybrid”, but finding it was the challenge.

So rather than detailing the issue and the reason (you can read that on Michael’s blog) this talks about the steps to troubleshoot this issue.

So first the issue. When starting a migration test from an Exchange 2010 mailbox with an Exchange 2013 hybrid server (running the mailbox and CAS roles) behind a Kemp load balancing (running 7.16 – the latest release at the time of writing, but recently upgraded from version 5 through 6 to 7) I got the following error:

image

The server name will be different (thanks Michael for the screenshot). In my case this was my clients UK datacentre. My clients Hong Kong datacentre was behind a Kemp load balancer as well, but is only running Exchange 2010 and the New York datacentre has an F5 load balancer. Moves from HK worked, but UK and NY failed for different reasons.

The issue shown above is not easy to solve as the migration dialog tells you nothing. In my case it was also telling me the wrong server name. It should have been returning the External EWSUrl from Autodiscover for the mailbox I was trying to move, instead it was returning the Outlook Anywhere external URL from the New York site (as the UK is proxied via NY for the OA connections). For moves to the cloud, we added the External URL for EWS to each site directly so we would move direct and not via the only site that offered internet connected email.

So troubleshooting started with exrca.com – the Microsoft Connectivity Analyser. Autodiscover worked most of the time in the UK but Synchronization, Notification, Availability, and Automatic Replies tests (to test EWS) always failed after six and a half seconds.

Autodiscover returned the following error:

A Web exception occurred because an HTTP 400 – BadRequest response was received from Unknown.
HTTP Response Headers:
Connection: close
Content-Length: 87
Content-Type: text/html
Date: Tue, 24 Jun 2014 09:03:40 GMT

Elapsed Time: 108 ms.

And EWS, when AutoDiscover was returning data correctly, was as follows:

Creating a temporary folder to perform synchronization tests.

Failed to create temporary folder for performing tests.

Additional Details

Exception details:
Message: The request failed. The remote server returned an error: (501) Not Implemented.
Type: Microsoft.Exchange.WebServices.Data.ServiceRequestException
Stack trace:
at Microsoft.Exchange.WebServices.Data.ServiceRequestBase.GetEwsHttpWebResponse(IEwsHttpWebRequest request)
at Microsoft.Exchange.WebServices.Data.ServiceRequestBase.ValidateAndEmitRequest(IEwsHttpWebRequest& request)
at Microsoft.Exchange.WebServices.Data.ExchangeService.InternalFindFolders(IEnumerable`1 parentFolderIds, SearchFilter searchFilter, FolderView view, ServiceErrorHandling errorHandlingMode)
at Microsoft.Exchange.WebServices.Data.ExchangeService.FindFolders(FolderId parentFolderId, SearchFilter searchFilter, FolderView view)
at Microsoft.Exchange.WebServices.Data.Folder.FindFolders(SearchFilter searchFilter, FolderView view)
at Microsoft.Exchange.Tools.ExRca.Tests.GetOrCreateSyncFolderTest.PerformTestReally()
Exception details:
Message: The remote server returned an error: (501) Not Implemented.
Type: System.Net.WebException
Stack trace:
at System.Net.HttpWebRequest.GetResponse()
at Microsoft.Exchange.WebServices.Data.EwsHttpWebRequest.Microsoft.Exchange.WebServices.Data.IEwsHttpWebRequest.GetResponse()
at Microsoft.Exchange.WebServices.Data.ServiceRequestBase.GetEwsHttpWebResponse(IEwsHttpWebRequest request)

Elapsed Time: 6249 ms.

What was interesting here was the 501 and that it was always approx. 6 seconds before it failed.

Looking in the IIS logs from the 2010 servers that hold the UK mailboxes there were no 501 errors logged. The same was true for the EWS logs as well. So where is the 501 coming from. I decided to bypass Exchange 2013 for the exrca.com test (as my system is not yet live and that is easy to do) and so in Kemp pointed the EWS SubVDir directly to a specific Exchange 2010 server. Everything worked. So I decided it was an Exchange 2013 issue, apart from the fact I have lab environments the same as this (without Kemp) and it works fine there. So I decided to search for “Kemp EWS 501” and that was the bingo keyword combination. EWS and 501 or Exchange EWS and 501 got nothing at all.

With my environment back to Kemp >  2013 >  2010 I looked at Michaels suggestions. The first was to run Test-MigrationServerAvailability –ExchangeRemoteMove –RemoteServer servername.domain.com. I changed this slightly, as I was not convinced that I was connecting to the correct endpoint. The migration reported the wrong server name and the Exrca tests do not tell you what endpoint they are connecting to. So I tried Test-MigrationServerAvailability –ExchangeRemoteMove –Autodiscover –EmailAddress user-on-premises@domain.com

As AutoDiscover is reporting errors at times, the second of these cmdlets sometimes reported the following:

RunspaceId         : a711bdd3-b6a1-4fb8-96b8-f669239ea534
Result             : Failed
Message            : AutoDiscover failed with a configuration error: The migration service failed to detect the
migration endpoint using the Autodiscover service. Please enter the migration endpoint settings
or go back to the first step and retry using the Autodiscover service. Consider using the
Exchange Remote Connectivity Analyzer (
https://testexchangeconnectivity.com) to diagnose the
connectivity issues.
ConnectionSettings :
SupportsCutover    : False
ErrorDetail        : internal error:Microsoft.Exchange.Migration.AutoDiscoverFailedConfigurationErrorException:
AutoDiscover failed with a configuration error: The migration service failed to detect the
migration endpoint using the Autodiscover service. Please enter the migration endpoint settings
or go back to the first step and retry using the Autodiscover service. Consider using the
Exchange Remote Connectivity Analyzer (
https://testexchangeconnectivity.com) to diagnose the
connectivity issues.
at Microsoft.Exchange.Migration.DataAccessLayer.MigrationEndpointBase.InitializeFromAutoDiscove
r(SmtpAddress emailAddress, PSCredential credentials)
at Microsoft.Exchange.Management.Migration.TestMigrationServerAvailability.InternalProcessExcha
ngeRemoteMoveAutoDiscover()
IsValid            : True
Identity           :
ObjectState        : New

And when AutoDiscover was working (as it was random) I would get this:

RunspaceId         : a711bdd3-b6a1-4fb8-96b8-f669239ea534
Result             : Failed
Message            : The ExchangeRemote endpoint settings could not be determined from the autodiscover response. No
MRSProxy was found running at ‘outlook.domain.com’.
ConnectionSettings :
SupportsCutover    : False
ErrorDetail        : internal error:Microsoft.Exchange.Migration.MigrationRemoteEndpointSettingsCouldNotBeAutodiscovere
dException: The ExchangeRemote endpoint settings could not be determined from the autodiscover
response. No MRSProxy was found running at ‘outlook.domain.com’. —>
Microsoft.Exchange.Migration.MigrationServerConnectionFailedException: The connection to the
server ‘outlook.domain.com’ could not be completed. —>
Microsoft.Exchange.MailboxReplicationService.RemoteTransientException: The call to
https://outlook.domain.com/EWS/mrsproxy.svc’ failed. Error details: The HTTP request is
unauthorized with client authentication scheme ‘Negotiate’. The authentication header received
from the server was ‘Basic Realm=”outlook.domain.com”‘. –> The remote server returned an
error: (401) Unauthorized.. —>
Microsoft.Exchange.MailboxReplicationService.RemotePermanentException: The HTTP request is
unauthorized with client authentication scheme ‘Negotiate’. The authentication header received
from the server was ‘Basic Realm=”outlook.domain.com”‘. —>
Microsoft.Exchange.MailboxReplicationService.RemotePermanentException: The remote server returned
an error: (401) Unauthorized.
— End of inner exception stack trace —
— End of inner exception stack trace —
at Microsoft.Exchange.MailboxReplicationService.MailboxReplicationServiceFault.<>c__DisplayClas
s1.<ReconstructAndThrow>b__0()
at Microsoft.Exchange.MailboxReplicationService.ExecutionContext.Execute(Action operation)
at Microsoft.Exchange.MailboxReplicationService.MailboxReplicationServiceFault.ReconstructAndTh
row(String serverName, VersionInformation serverVersion)
at Microsoft.Exchange.MailboxReplicationService.WcfClientWithFaultHandling`2.<>c__DisplayClass1
.<CallService>b__0()
at Microsoft.Exchange.Net.WcfClientBase`1.CallService(Action serviceCall, String context)
at Microsoft.Exchange.Migration.MigrationExchangeProxyRpcClient.CanConnectToMrsProxy(Fqdn
serverName, Guid mbxGuid, NetworkCredential credentials, LocalizedException& error)
— End of inner exception stack trace —
at Microsoft.Exchange.Migration.DataAccessLayer.ExchangeRemoteMoveEndpoint.VerifyConnectivity()
at Microsoft.Exchange.Management.Migration.TestMigrationServerAvailability.InternalProcessEndpo
int(Boolean fromAutoDiscover)
— End of inner exception stack trace —
IsValid            : True
Identity           :
ObjectState        : New

This was returning the URL https://outlook.domain.com/EWS/mrsproxy.svc’ which is not correct for this mailbox (this was the OA endpoint in a different datacentre) and external Outlook access is not allowed at this company and so the TMG server in front of the F5 load balancer in the NY datacentre was not configured for OA anyway and browsing the the above URL returned the following picture, which is a well broken scenario but not the issue at hand here!

image

If OA (Outlook Anywhere) was available for this company, this is not what I would expect to see when browsing to the External EWS URL. To that end we have EWS URL’s are bypass TMG and go direct to the load balancer.

So now we have either no valid AutoDiscover response or EWS using the wrong URL. Back to the version of the cmdlet Michael was using as that ignores AutoDiscover: Test-MigrationServerAvailability –ExchangeRemoteMove –RemoteServer servername.domain.com

RunspaceId         : 5874c796-54ce-420f-950b-1d300cf0a64a
Result             : Failed
Message            : The connection to the server ‘ewsinukdatacentre.domain.com’ could not be completed.
ConnectionSettings :
SupportsCutover    : False
ErrorDetail        : Microsoft.Exchange.Migration.MigrationServerConnectionFailedException: The connection to the
server ‘ewsinukdatacentre.domain.com’ could not be completed. —>
Microsoft.Exchange.MailboxReplicationService.RemoteTransientException: The call to
https://ewsinukdatacentre.domain.com/EWS/mrsproxy.svc’ failed. Error details: The remote server returned
an unexpected response: (501) Invalid Request. –> The remote server returned an error: (501) Not
                     Implemented.. —> Microsoft.Exchange.MailboxReplicationService.RemotePermanentException: The
remote server returned an unexpected response: (501) Invalid Request. —>
Microsoft.Exchange.MailboxReplicationService.RemotePermanentException: The remote server returned
an error: (501) Not Implemented.
— End of inner exception stack trace —
— End of inner exception stack trace —
at Microsoft.Exchange.MailboxReplicationService.MailboxReplicationServiceFault.<>c__DisplayClas
s1.<ReconstructAndThrow>b__0()
at Microsoft.Exchange.MailboxReplicationService.ExecutionContext.Execute(Action operation)
at Microsoft.Exchange.MailboxReplicationService.MailboxReplicationServiceFault.ReconstructAndTh
row(String serverName, VersionInformation serverVersion)
at Microsoft.Exchange.MailboxReplicationService.WcfClientWithFaultHandling`2.<>c__DisplayClass1
.<CallService>b__0()
at Microsoft.Exchange.Net.WcfClientBase`1.CallService(Action serviceCall, String context)
at Microsoft.Exchange.Migration.MigrationExchangeProxyRpcClient.CanConnectToMrsProxy(Fqdn
serverName, Guid mbxGuid, NetworkCredential credentials, LocalizedException& error)
— End of inner exception stack trace —
at Microsoft.Exchange.Migration.DataAccessLayer.ExchangeRemoteMoveEndpoint.VerifyConnectivity()
at Microsoft.Exchange.Management.Migration.TestMigrationServerAvailability.InternalProcessEndpo
int(Boolean fromAutoDiscover)
IsValid            : True
Identity           :
ObjectState        : New

Now we can see the 501 error that exrca was returning. It would seem that the 501 is coming from the Kemp and not from the endpoint servers, which is why I could not located it in IIS or EWS logs and so in the Kemp System Message File (logging options > system log files) I found the 501 error:

kernel: L7: badrequest-client_read [157.56.251.92:61541->192.168.1.2:443] (-501): <s:Envelope ? , 0 [hlen 1270, nhdrs 8]

Where the first IP address was a Microsoft datacentre IP and the second was the Kemp listener IP.

It turns out this is due to the Kemp load balancer not returning to Microsoft the Continue-100 status that it should get. Microsoft waits 5 seconds and then sends the data it would have done if it got the response back. At this point the Kemp blocks this data with a 501 error.

It is possible to turn off Kemp’s processing of Continue-100 HTTP packets so it lets them through and this is covered in http://blog.masteringmsuc.com/2013/10/kemp-load-balancer-and-lync-unified.html:

 

In the version at my clients which was upgraded to version 7.0-16 from a v5 to v6 to v7 it was defaulting to RFC Conformant, but needs to be Ignore Continue-100 to work with Office 365. In versions of Kemp 7.1 and later the value needs to be changed to RFC-7231 Compliant from the default of “RFC-2616 Compliant”. Now EWS works, hybrid mailbox moves work, and AutoDiscover is always working on that server – so a mix of issues caused by differing interpretations of an RFC. To cover all these issues the Kemp load balancer started to include this 100-Continue Handling setting. We as ITPro’s need to ensure that we set the correct setting for our environment based on the software we use.

Configuring Exchange On-Premises to Use Azure Rights Management

Posted on 7 CommentsPosted in 2010, 2013, 64 bit, aadrm, ADFS, ADFS 2.0, DLP, DNS, exchange, exchange online, https, hybrid, IAmMEC, load balancer, loadbalancer, mcm, mcsm, MVP, Office 365, powershell, rms, sharepoint, warm

This article is the fifth in a series of posts looking at Microsoft’s new Rights Management product set. In an earlier previous post we looked at turning on the feature in Office 365 and in this post we will look at enabling on-premises Exchange Servers to use this cloud based RMS server. This means your cloud users and your on-premises users can shared encrypted content and as it is cloud based, you can send encrypted content to anyone even if you are not using an Office 365 mailbox.

In this series of articles we will look at the following:

The items above will get lit up as the articles are released – so check back or leave a comment to the first post in the series and I will let you know when new content is added.

Exchange Server integrates very nicely with on-premises RMS servers. To integrate Exchange on-premises with Windows Azure Rights Management you need to install a small service online that can connect Exchange on-premises to the cloud RMS service. On-premises file servers (classification) and SharePoint can also use this service to integrate themselves with cloud RMS.

You install this small service on-premises on servers that run Windows Server 2012 R2, Windows Server 2012, or Windows Server 2008 R2. After you install and configure the connector, it acts as a communications interface between the on-premises IRM-enabled servers and the cloud service. The service can be downloaded from http://www.microsoft.com/en-us/download/details.aspx?id=40839

From this download link there are three files to get onto the server you are going to use for the connector.

  • RMSConnectorSetup.exe (the connector server software)
  • GenConnectorConfig.ps1 (this automates the configuration of registry settings on your Exchange and SharePoint servers)
  • RMSConnectorAdminToolSetup_x86.exe (needed if you want to configure the connector from a 32bit client)

Once you have all this software (or that which you need) and you install it then IT and users can easily protect documents and pictures both inside your organization and outside, without having to install additional infrastructure or establish trust relationships with other organizations.

The overview of the structure of the link between on-premises and Windows Azure Rights Management is as follows:

IC721938

Notice therefore that there are some prerequisites needed. You need to have an Office 365 tenant and turn on Windows Azure Rights Management. Once you have this done you need the following:

  • Get your Office 365 tenant up and running
  • Configure Directory Synchronization between on-premises Active Directory and Windows Azure Active Directory (the Office 365 DirSync tool)
  • It is also recommended (but not required) to enable ADFS for Office 365 to avoid having to login to Windows Azure Rights Management when creating or opening protected content.
  • Install the connector
  • Prepare credentials for configuring the software.
  • Authorising the server for connecting to the service
  • Configuring load balancing to make this a highly available service
  • Configuring Exchange Server on-premises to use the connector

Installing the Connector Service

  1. You need to set up an RMS administrator. This administrator is either the a specific user object in Office 365 or all the members of a security group in Office 365.
    1. To do this start PowerShell and connect to the cloud RMS service by typing Import-Module aadrm and then Connect-AadrmService.
    2. Enter your Office 365 global administrator username and password
    3. Run Add-AadrmRoleBasedAdministrator -EmailAddress <email address> -Role “GlobalAdministrator” or Add-AadrmRoleBasedAdministrator -SecurityGroupDisplayName <group Name> -Role “ConnectorAdministrator”. If the administrator object does not have an email address then you can lookup the ObjectID in Get-MSOLUser and use that instead of the email address.
  2. Create a namespace for the connector on any DNS namespace that you own. This namespace needs to be reachable from your on-premises servers, so it could be your .local etc. AD domain namespace. For example rmsconnector.contoso.local and an IP address of the connector server or load balancer VIP that you will use for the connector.
  3. Run RMSConnectorSetup.exe on the server you wish to have as the service endpoint on premises. If you are going to make a highly available solutions, then this software needs installing on multiple machines and can be installed in parallel. Install a single RMS connector (potentially consisting of multiple servers for high availability) per Windows Azure RMS tenant. Unlike Active Directory RMS, you do not have to install an RMS connector in each forest. Select to install the software on this computer:
    IC001
  4. Read and accept the licence agreement!
  5. Enter your RMS administrator credentials as configured in the first step.
  6. Click Next to prepare the cloud for the installation of the connector.
  7. Once the cloud is ready, click Install. During the RMS installation process, all prerequisite software is validated and installed, Internet Information Services (IIS) is installed if not already present, and the connector software is installed and configured
    IC002
  8. If this is the last server that you are installing the connector service on (or the first if you are not building a highly available solution) then select Launch connector administrator console to authorize servers. If you are planning on installing more servers, do them now rather than authorising servers:
    IC003
  9. To validate the connector quickly, connect to http://<connectoraddress>/_wmcs/certification/servercertification.asmx, replacing <connectoraddress> with the server address or name that has the RMS connector installed. A successful connection displays a ServerCertificationWebService page.
  10. For and Exchange Server organization or SharePoint farm it is recommended to create a security group (one for each) that contains the security objects that Exchange or SharePoint is. This way the servers all get the rights needed for RMS with the minimal of administration interaction. Adding servers individually rather than to the group results in the same outcome, it just requires you to do more work. It is important that you authorize the correct object. For a server to use the connector, the account that runs the on-premises service (for example, Exchange or SharePoint) must be selected for authorization. For example, if the service is running as a configured service account, add the name of that service account to the list. If the service is running as Local System, add the name of the computer object (for example, SERVERNAME$).
    1. For servers that run Exchange: You must specify a security group and you can use the default group (DOMAIN\Exchange Servers) that Exchange automatically creates and maintains of all Exchange servers in the forest.
    2. For SharePoint you can use the SERVERNAME$ object, but the recommendation configuration is to run SharePoint by using a manually configured service account. For the steps for this see http://technet.microsoft.com/en-us/library/dn375964.aspx.
    3. For file servers that use File Classification Infrastructure, the associated services run as the Local System account, so you must authorize the computer account for the file servers (for example, SERVERNAME$) or a group that contains those computer accounts.
  11. Add all the required groups (or servers) to the authorization dialog and then click close. For Exchange Servers, they will get SuperUser rights to RMS (to decrypt content):
    image
    image
  12. If you are using a load balancer, then add all the IP addresses of the connector servers to the load balancer under a new virtual IP and publish it for TCP port 80 (and 443 if you want to configure it to use certificates) and equally distribute the data across all the servers. No affinity is required. Add a health check for the success of a HTTP or HTTPS connection to http://<connectoraddress>/_wmcs/certification/servercertification.asmx so that the load balancer fails over correctly in the event of connector server failure.
  13. To use SSL (HTTPS) to connect to the connector server, on each server that runs the RMS connector, install a server authentication certificate that contains the name that you will use for the connector. For example, if your RMS connector name that you defined in DNS is rmsconnector.contoso.com, deploy a server authentication certificate that contains rmsconnector.contoso.com in the certificate subject as the common name. Or, specify rmsconnector.contoso.com in the certificate alternative name as the DNS value. The certificate does not have to include the name of the server. Then in IIS, bind this certificate to the Default Web Site.
  14. Note that any certificate chains or CRL’s for the certificates in use must be reachable.
  15. If you use proxy servers to reach the internet then see http://technet.microsoft.com/en-us/library/dn375964.aspx for steps on configuring the connector servers to reach the Windows Azure Rights Management cloud via a proxy server.
  16. Finally you need to configure the Exchange or SharePoint servers on premises to use Windows Azure Active Directory via the newly installed connector.
    • To do this you can either download and run GenConnectorConfig.ps1 on the server you want to configure or use the same tool to generate Group Policy script or a registry key script that can be used to deploy across multiple servers.
    • Just run the tool and at the prompt enter the URL that you have configured in DNS for the connector followed by the parameter to make the local registry settings or the registry files or the GPO import file. Enter either http:// or https:// in front of the URL depending upon whether or not SSL is in use of the connectors IIS website.
    • For example .\GenConnectorConfig.ps1 –ConnectorUri http://rmsconnector.contoso.com -SetExchange2013 will configure a local Exchange 2013 server
  17. If you have lots of servers to configure then run the script with –CreateRegEditFiles or –CreateGPOScript along with –ConnectorUri. This will make five reg files (for Exchange 2010 or 2013, SharePoint 2010 or 2013 and the File Classification service). For the GPO option it will make one GPO import script.
  18. Note that the connector can only be used by Exchange Server 2010 SP3 RU2 or later or Exchange 2013 CU3 or later. The OS on the server also needs to be include a version of the RMS client that supports RMS Cryptographic Mode 2. This is Windows Server 2008 + KB2627272 or Windows Server 2008 R2 + KB2627273 or Windows Server 2012 or Windows Server 2012 R2.
  19. For Exchange Server you need to manually enable IRM as you would do if you had an on-premises RMS server. This is covered in http://technet.microsoft.com/en-us/library/dd351212.aspx but in brief you run Set-IRMConfiguration -InternalLicensingEnabled $true. The rest, such as transport rules and OWA and search configuration is covered in the mentioned TechNet article.
  20. Finally you can test if RMS is working with Test-IRMConfiguration –Sender billy@contoso.com. You should get a message at the end of the test saying Pass.
  21. If you have downloaded GenConnectorConfig.ps1 before May 1st 2014 then download it again, as the version before this date writes the registry keys incorrectly and you get errors such as “FAIL: Failed to verify RMS version. IRM features require AD RMS on Windows Server 2008 SP2 with the hotfixes specified in Knowledge Base article 973247” and “Microsoft.Exchange.Security.RightsManagement.RightsManagementException: Failed to get Server Info from http://rmsconnector.contoso.com/_wmcs/certification/server.asmx. —> System.Net.WebException: The request failed with HTTP status 401: Unauthorized.”. If you get these then turn of IRM, delete the “C:\ProgramData\Microsoft\DRM\Server” folder to remove old licences, delete the registry keys and run the latest version of GetConnectorConfig.ps1, refresh the RMS keys with Set-IRMConfiguration –RefreshServerCertificates and reset IIS with IISRESET.

Now you can encrypt messages on-premises using your AADRM licence and so not require RMS Server deployed locally.

Highly Available Office 365 to On-Premises Mail Routing

Posted on 22 CommentsPosted in 2010, 2013, cloud, DNS, EOP, exchange, exchange online, Exchange Online Protection, hybrid, IAmMEC, MX, Office 365, smarthost, smtp

This article looks at how to configure mail flow from Office 365 (via Exchange Online Protection – EOP) to your On Premises organization to ensure that it is highly available and work in disaster recovery scenarios with no impact. It is based on exactly the same principle to that which I blogged about in 2012: http://c7solutions.com/2012/05/highly-available-geo-redundancy-with-html on creating redundant outbound connections from Exchange on premises.

The best way to explain this feature is to describe it in the way of an example:

For example MCMEmail Ltd have Hybrid set up, and delivery to the cloud first. So the DNS zone for mcmemail.co.uk has MX pointing to EOP.

They then create a new DNS zone at either a subzone (as in this example) or a different domain if they have one available. In the example this could be hybrid.mcmemail.co.uk. Into this zone they add the following records:

10 MX oxford-a.hybrid.mcmemail.co.uk

10 MX oxford-b.hybrid.mcmemail.co.uk

20 MX nuneaton.hybrid.mcmemail.co.uk

The below picture shows an example of this configured in AWS Route 53 DNS (though there are other DNS providers available)

image

In Exchange Online Protection administration pages (Office 365 Portal > Exchange Admin > Mail Flow > Connectors and modify your on-premises connector to point to the new zone. Example shown in the below picture:

image

Then all email is always delivered to the Oxford datacentre and nothing to the Nuneaton one (where the DR servers reside) unless the two Oxford datacentres (A and B) are both offline and so the 10 preference does not answer at all. At that time and that time only does the 20 preference get connected to.

The New Rights Management Service

Posted on 3 CommentsPosted in aadrm, active directory, certificates, cloud, compliance, dirsync, exchange, exchange online, https, hybrid, journal, journaling, mcm, mcsm, microsoft, Office 365, Outlook, pki, policy, rms, smarthost, transport, unified messaging, voicemail

This blog is the start of a series of articles I will write over the next few months on how to ensure that your data is encrypted and secured to only the people you want to access it, and only for the level of rights you want to give them.

The technology that we will look at to do this is Microsoft’s recently released Windows Azure Active Directory Rights Management product, also known as AADRM or Microsoft Rights Management, or “the new RMS”.

In this series of articles we will look at the following:

The items above will get lit up as the article is released – so check back or leave a comment to this post and I will let you know when new content is added to this series.

What is “rights management”

Simply this is the ability to ensure that your content is only used by whom you want it to be used by and only for what you grant. Its known in various guises, and the most common guise is Digital Rights Management (DRM) as applied to the music and films you have been downloading for years.

With the increase in sharing music and other mp3 content in the last ten plus years, the recording companies and music sellers started to protect music. It did not go down well, and I would say this is mainly because the content was bought and so the owner wanted to do with it as they liked – even if what they liked was legal they were limited from doing so. I have music I bought that I cannot use because the music retailer is out of business or I tried to transfer it too many times. I now buy all my music DRM free.

But if the content is something I created and sold, rather than something I bought I see it very differently. When the program was running I was one of the instructors for the Microsoft Certified Master program. I wrote and delivered part of the Exchange Server training. And following the reuse of my and other peoples content outside of the classroom, the content was rights protected – it could be read only by those who I had taught. Those I taught think differently about this, but usually because the management of getting a new copy of the content when it expires!

But this is what rights management is, and this series of articles will look at enabling Azure Active Directory Rights Management, a piece of Office 365 that if you are an E3 or E4 subscriber then you already have, and if you have a lower level of subscription or none at all you can buy for £2/user/month and this will allow you to protect the content that you create, that it can be used by only those you want to read it (regardless of where you or they put it) and if you want it can expire after a given time.

In this series we will look at enabling the service and connecting various technologies to it, from our smartphones to PC’s to servers and then distributing our protected content to whom needs to see it. Those who receive it will be able to use the content for free. You only pay to create protected content. We will also look at protecting content automatically, for example content that is classified in a given way by Windows Server or emails that match certain conditions (for example they contain credit cards or other personally identifiable information (PII) information such as passport or tax IDs) and though I am not a SharePoint guru, we will look at protecting content downloaded from SharePoint document libraries.

Finally we will look at users protecting their own content – either the photographs they take on their phones of information they need to share (documents, aka using the phones camera as a scanner) or taking photos of whiteboards in meetings where the contents on the board should not be shared too widely.

Stick around – its a new technology and its going to have a big impact on the way we share data, regardless of whether we share it with Dropbox or the like or email or whatever comes next.

Cannot Send Emails To Office 365 or Exchange Online Protection Using TLS

Posted on 10 CommentsPosted in 2003, 2007, 2010, 2013, exchange, exchange online, Exchange Online Protection, FOPE, hybrid, Office 365, spam, starttls, TLS

I have found this is a common issue. You set up an Exchange Online Hybrid or Exchange Online Protection (EOP) stand alone service and follow all the instructions for the creating of the connectors needed, only to find that your emails queue in your Exchange Server. If you turn on protocol logging you get this error in the log “Connector is configured to send mail only over TLS connections and remote doesn’t support TLS” and if you look at the SMTP protocol verbs that are recorded in the log you see that Microsoft’s servers do not offer STARTTLS as a verb.

STARTTLS is the SMTP verb needed to begin a secure and encrypted session using TLS. Communication between your on-premises servers and Microsoft for hybrid or EOP configurations requires TLS and if you cannot start TLS then your email will queue.

If you are not configuring hybrid or EOP standalone and need to send an email to someone on Office 365 then this is not an issue, because Exchange Server does not require TLS for normal email communication and so the lack of a STARTTLS verb means your email is sent in clear text.

The reason why you are not getting STARTTLS offered is that your connecting IP address is on the Microsoft block list. If you change your connector (temporarily) to allow opportunistic TLS or no TLS at all then your emails will leave the queue – but will be rejected by the Microsoft servers. The NDR for the rejection will tell you to email Microsoft’s delisting service. So now you have an NDR with the answer to the problem in, you can fix it! It takes 1 to 2 hours to get delisted from when Microsoft process your email – so they say it takes 48 hours end to end.

Therefore my recommendation when setting up Exchange Online Hybrid or stand alone EOP is to send an email over plain text to EOP before you configure your service. If you are on the blocklist then you will get back the delisting email and you can process that whilst setting up the connectors to Office 365 and so by the time you are ready to test, you are off the blocklist!

To send a test email over Telnet

  1. Install the Telnet Client feature on your Exchange Server that will be your source server for hybrid or connectivity to EOP for outbound email
  2. Type the following. This will send an email to a fake address at Microsoft, but will hit the TLS error before the message is rejected

    telnet microsoft-com.mail.protection.outlook.com 25

  3. You are now connected to Exchange Online Protection and you should get a 220 response
  4. Type the following to send the email by command line. No typo’s allowed in telnet, so type carefully. Replacing your email address where prompted so that you get the NDR back to you.

    ehlo yourdomainname.com
    mail from: youremailaddress@domainname.com
    rcpt to: madeupaddress@microsoft.com
    data
    from: Your Name <youremailaddress@domainname.com>
    to: madeupaddress@microsoft.com
    subject: testing to see if my IP is blocked

    type something here, it does not matter what, this is the body of the message you are sending
    .

  5. A few points about the above. It must finish with a . (full stop) on a line by itself followed by a carriage return. There must be a blank line between the subject line and the body. And finally, for each line of data you type, the Microsoft SMTP servers will return either a 250 or 354 response.